71 research outputs found

    The Yale liquid argon time projection chamber

    Get PDF
    In this paper we give a thorough description of a liquid argon time projection chamber designed, built and operated at Yale. We present results from a calibration run where cosmic rays have been observed in the detector, a first in the US.Comment: 13 pages, 11 figures. The quality of some of the figures has been reduce

    A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators

    Get PDF
    Particle accelerators are invaluable tools for research in the basic and applied sciences, in fields such as materials science, chemistry, the biosciences, particle physics, nuclear physics and medicine. The design, commissioning, and operation of accelerator facilities is a non-trivial task, due to the large number of control parameters and the complex interplay of several conflicting design goals. We propose to tackle this problem by means of multi-objective optimization algorithms which also facilitate massively parallel deployment. In order to compute solutions in a meaningful time frame, that can even admit online optimization, we require a fast and scalable software framework. In this paper, we focus on the key and most heavily used component of the optimization framework, the forward solver. We demonstrate that our parallel methods achieve a strong and weak scalability improvement of at least two orders of magnitude in today's actual particle beam configurations, reducing total time to solution by a substantial factor. Our target platform is the Blue Gene/P (Blue Gene/P is a trademark of the International Business Machines Corporation in the United States, other countries, or both) supercomputer. The space-charge model used in the forward solver relies significantly on collective communication. Thus, the dedicated TREE network of the platform serves as an ideal vehicle for our purposes. We demonstrate excellent strong and weak scalability of our software which allows us to perform thousands of forward solves in a matter of minutes, thus already allowing close to online optimization capabilit

    An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle

    Get PDF
    Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs

    Metal−Alq 3

    No full text
    • …
    corecore